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Advantages of linear amplifiers
in Power Hardware In the Loop

applications
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Structure

1. Introduction
2. Definition PHIL
3. Principles of linear power amplifiers
4. Advantages of linear power amplifiers in PHIL 

applications
5. Example and measurements
6. Conclusion
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Advantages of linear power
amplifiers for PHIL? Amplifier

for PHIL?
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Introduction

PHIL simulations have to be 
stable and accurate!

Problems:
- Only low dynamic simulations due to stability 

problems of PHIL simulation system possible

- Loss of time and money due to inaccuracy of 
simulation
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Definition PHIL

• Power Hardware In the Loop (PHIL)

Power Hardware-in-the-Loop (PHIL) simulation represents a
natural extension of HIL, in which the real-time simulation
environment is capable of exchanging not just low-voltage, low-
current signals, but the power required by the Devices under Test
(DUT).

⇒ Necessity for power amplifiers
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Schematic diagram for PHIL

Power
amplifierScaling

Filters

D/A converter

A/D converter V + I sensors

Real time
simulation

Power device 
under test
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Selection of the amplifier for PHIL 
application
• Source and sink power ratings of the amplifier

• Power ratings of the device under test

• Amplifier interface connections

• Amplifier input and output voltage/current range

• Amplifier input and output impedances

• Amplifier protection (overload, heating, short circuit) 

• Amplifier harmonic distortion and frequency resolution

• Amplifier delay time

• Amplifier slew rate

Vout

-Vsupply

+Vsupply

V+

V-

+

-
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Comparison of switched-mode with 
linear amplifiers

Switched-mode amplifier Linear amplifier

Bandwidth reduced bandwidth high bandwidth

Delay time long delay time short delay time

Efficiency high medium

Application range commonly used in MW range < MW

Cost medium high

Peak current low high

Output noise medium low

Switched-mode amplifier

Linear amplifier


Tabelle1

				Switched-mode amplifier		Linear amplifier

		Bandwidth		reduced bandwidth		high bandwidth

		Delay time		long delay time		short delay time

		Efficiency 		high		medium

		Application range		commonly used in MW range		< MW

		Cost		medium		high

		Peak current		low		high

		Output noise		medium		low
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Principle of linear power amplifier APS

APS EUT

A

V

D
A

A
D

Digital interface
optical link

Analogue
ext. input

-Vsupply

+Vsupply

Output

GND

Analogue
monitor

A
D

Digital
control
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Technical data of APS
Power ratings
1kVA … 1MVA

Interfaces
LAN, GPIB, 

RS232

Slew rate
> 52V/µs

Delay time
≈ 5-10µs

Harmonic 
distortion

< 0.2%

Voltage
0V … 1500V

Current
0A … 10.000A

Bandwidth
DC … 30kHz

Output 
impedance

< 5mΩ
Protection

Overload, short-
circuit, overtem-

perature
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Features of APS
Small signal 
bandwidth

up to 100kHz

4-quadrant 
operation mode

Voltage and current 
mode operation

Very low internal 
resistance

Very fast slew rate
⇒ Rise time < 5µs 
(IEC 61000-4-11)

Extremely low 
harmonic distortion

High short-term 
overload

characteristic

Very high peak-load 
ability (up to 3ms)

High dynamic
voltage and current 

limitation

Large signal 
bandwidth

DC … 30kHz
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Delay time of analogue interface 
(without load)
• Delay time between external analogue 

input and power output APS: 2.9µs
• Delay time between power output and 

measurement output APS: 0.8µs
• Additional time delay for output real-time 

simulator and read measurement:  ≈ 5µs
external input APS
power output APS
measurement output APS 

2.9µs

Power
amplifierScaling

Filters

D/A converter

A/D converter V + I sensors

Real time
simulation

0.8µs≈ 2µs

≈ 3µs 2.9µs
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Delay time of analogue interface 
(with 100Ω load)
• Delay time between external analogue 

input and power output APS: 3.1µs
• Delay time between power output and 

measurement output APS: 0.8µs
• Additional time delay for output real-time 

simulator and read measurement:  ≈ 5µs
external input APS
power output APS
measurement output APS 

3.1µs

Power
amplifierScaling

Filters

D/A converter

A/D converter V + I sensors

Real time
simulation

0.8µs≈ 2µs

≈ 3µs 3.1µs
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Technical data of monitor output APS

Monitor output Voltage V Current I

Measuring ranges
900Vp / 450Vp /
225Vp / 112.5Vp

depending on peak 
current of the amplifier

Max. amplitude
Scaling 0.2 … 1000 0.1 … 1000
Bandwidth 300kHz 200kHz
Accuracy
Noise of ADC measurement <20mVrms  (DC ... 300kHz) <1.5mArms  (DC ... 300kHz)

Noise of DAC output <0.2mVrms  (DC ... 300kHz) <0.2mVrms  (DC ... 300kHz)

Delay time
Output impedance

Isolation

Protection

isolated against each other, against remaining 
electronics and against earth

Short circuit

47Ω
<1µs

±10Vp

0.3%


Tabelle1

		Monitor output		Voltage V		Current I

		Measuring ranges		900Vp / 450Vp /
225Vp / 112.5Vp		depending on peak current of the amplifier

		Max. amplitude		±10Vp

		Scaling		0.2 … 1000		0.1 … 1000

		Bandwidth		300kHz		200kHz

		Accuracy		0.3%

		Noise of ADC measurement		<20mVrms  (DC ... 300kHz)		<1.5mArms  (DC ... 300kHz)

		Noise of DAC output		<0.2mVrms  (DC ... 300kHz)		<0.2mVrms  (DC ... 300kHz)

		Delay time		<1µs

		Output impedance		47W

		Isolation		isolated against each other, against remaining electronics and against earth

		Protection		Short circuit
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Principle schematic for PHIL

- Using analogue interface

Power
amplifierScaling

Filters

D/A converter

A/D converter V + I sensors

Real time
simulation

Power device 
under test

analogue
monitor

analogue
external input
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Principle schematic for PHIL

- Using digital interface

Power
amplifier
and
V + I 
sensors

Real time
simulation

Power device 
under testoptical link

voltage/current reading, status

set point, Ri, current limit, 
control command

No delay and accuracy loss 
due to D/A and A/D conversion! 
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Optical link between RTS and linear 
power amplifier
• Hardware: High-speed optical serial transceivers

2x7 SFF 850nm
• Protocol: Xilinx® LogiCORETM IP Aurora 8B/10B
• Data Rate: 2Gb/s
• Transmission: Easy-to-use AXI4-Stream based framing

4-byte-per-lane
• CRC: 32-bit
• Flow control: None
• Protocol data: Rx_D:

Tx_D:

Set point Maximum
current limitation

Minimum
current limitation

Internal 
resistance Command value

Voltage reading Current reading Status value

Echo request CRC

Echo response CRC
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Advantages of optical link

• Less time delay
• Higher accuracy due to unnecessity of AD and DA conversion
• No interference due to electric or magnetic field (no additional 

noise) 
• Possibility of high distance between simulator and amplifier

(maximum link length > 100m)
• Integrated digital measuring filter
• Simpler design / no complex physical wiring
• Plug and Play
• Lower costs
• Available for OPAL-RT and RTDS simulator  
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Delay time of digital interface 
via optical link
• Step response measurement

Delay time between send digital control 
value and receive digital reading:    ≈ 4µs

Power
amplifier
and

V + I 
sensors

Real time
simulation

Digital interface 
via optical link

voltage/current reading, status

set point, Ri, current limit, 
control command

≈ 4µs

≈ 4µs

time [µs]

Step response of digital control

vo
lta

ge
 [V

]
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Example PHIL test setup
resistive load

electronic
switch

amplifier
APS 1000

RT-LAB
simulation

OPAL RT 
simulator
OP4510

Tektronix
oscilloscope
TDS 3014A

V

-Vsupply

+Vsupply

Ri

V0

Software simulation

+

-

Hardware interface

APS 1000

electronic
switch

resistive
load

V1

I

oscilloscope
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Example project: Simulation of power 
source with internal resistance
• Top level of example 

project
• Model consists of 

computation block and 
user interface for setting 
input values

• Time step is set to 10ns
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Example project: Simulation of power 
source with internal resistance
• Block sm_computation 

consists of an input from 
user interface and an 
output to user interface

• Computation is done 
within CPU
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Example project: Simulation of power 
source with internal resistance
• Block Channel_0_1_sys 

contains the generation 
of a sine wave with 
constant frequency 
which is multiplied with 
the amplitude factor  and 
added to an offset from 
the user interface

• PXI interface to FPGA
• Gain =

231
1024
1000∗900𝑉𝑉

=2330168.8888
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Example project: Simulation of power 
source with internal resistance
• Block sc_user_interface 

consists of an input from 
FPGA and an output to 
FPGA

• Computation is done 
within CPU

• Gain1 = Gain2 =
231

1024
1000∗26.4𝐴𝐴

=79437575.75

• Gain3 = 232
900𝑉𝑉
26.4𝐴𝐴

=125985707.35

• Gain4 = 216
900𝑉𝑉
26.4𝐴𝐴

=1922.3893333
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Example project: Simulation of power 
source with internal resistance
• FCGenMSRcv0  

contains the Aurora 
protocol and the internal 
resistance simulation

• Computation is done 
within FPGA
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Example project: Simulation of power 
source with internal resistance
• FCGenMSRcv0  

contains the time step 
adjustment

• Computation is done 
within FPGA
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Example project: Simulation of power 
source with internal resistance
• _rtds_Aurora_SPS_Inj

component can be used 
for optical link connection

• Selection options: 
voltage or current source
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Example project: Simulation of power 
source with internal resistance
• Parameter setting by 

slider or numerical value 
• Graphic representation 

of set point values and  
readings
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Simulation of internal resistance with 
RT simulator (10µs time steps)

Amplitude: 0V
Offset: 100V
MaxLimit: 20A
MinLimit: -20A
Ri_APS: 0Ω
Ri_Simulator: 34Ω
Tx_Period: 10µs
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Simulation of internal resistance with 
RT simulator (0.25µs time steps)

Amplitude: 0V
Offset: 100V
MaxLimit: 20A
MinLimit: -20A
Ri_APS: 0Ω
Ri_Simulator: 34Ω
Tx_Period: 0.25µs
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Simulation of internal resistance with 
power amplifier APS

Amplitude: 0V
Offset: 100V
MaxLimit: 20A
MinLimit: -20A
Ri_APS: 34Ω
Ri_Simulator: 0Ω
Tx_Period: 0.25µs
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Conclusion

• Goal: stable and accurate PHIL simulations

• Advantages of linear power amplifiers with 
analogue interface or especially with optical link:

- minimized delay time
- very fast slew rate

⇒ high stability and accuracy
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